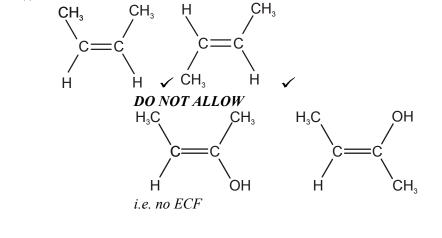
<u>Alcohols</u>

2-Methylpropan-2-ol ✓ *ALLOW* methylpropan-2-ol

Has O–H (bonds)
 OR has hydroxyl (groups) OR has hydroxy (groups) ✓
 ALLOW marks from a diagram of hydrogen bonding IGNORE reference to alcohol functional group

Forms hydrogen bonds with water (molecules) ✓ DO NOT ALLOW 'forms hydrogen bonds'


3. CH₃COOCH₂CH₂OOCCH₃

1 mark for each ester end of molecule $\checkmark\checkmark$

ALLOW displayed formula OR skeletal formula ALLOW sticks CH₃COOCH₂CH₂OH shows one of the two ester groups and scores one mark

4. (i)

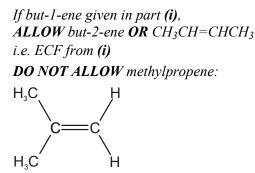
1.

(ii) *E*/Z ✓

ALLOW cis-trans IGNORE geometric

1

2


1

[1]

[2]

[2]

(iii) CH₃CH₂CH=CH₂ **OR** but-1-ene \checkmark

[4]

1

5. From the evidence, candidates may have identified compound **F** as propanone, propanal or propanoic acid

If **F** is propanone or propanoic acid, then maximum score = 7; **but** if **F** is propanal then maximum score = 6

The mark scheme for \mathbf{F} = propanone and propanal is shown below.

mass spec of E- Remember to check the spectrum Quality of Written Communication – mass spec gives M^+ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (ALLOW m/e) value is 60 \checkmark

m/z = 45 indicates loss of CH₃ OR m/z = 45 indicates presence of CH₃CHOH OR CH₂CH₂OH OR C₂H₅O \checkmark

IR of F – Remember to check the spectrum

IR shows no broad absorption between 2500 to 3300 cm⁻¹ so no O—H bond **OR** no broad absorption between 2500 to 3300 cm⁻¹ so not a carboxylic acid \checkmark

IR shows absorption at 1700 cm⁻¹ due to a C=O bond OR absorption at 1700 cm⁻¹ indicates a ketone OR aldehyde present

Identification and equation

F is CH_3COCH_3 **OR** propanone \checkmark

E is $CH_3CHOHCH_3$ **OR** propan-2-ol \checkmark

 $CH_{3}CHOHCH_{3} + [O] \rightarrow CH_{3}COCH_{3} + H_{2}O \checkmark$

If **F** has been incorrectly identified as propanal, mark identification and equation as ECF, so $\max = 2$

ALLOW E is $CH_3CH_2CH_2OH \checkmark$

ALLOW: $CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark$

The mark scheme for \mathbf{F} = propanoic acid is shown below.

mass spec of E– Remember to check the spectrum QWC – mass spec gives M^+ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (OR m/e) value is 60 \checkmark

m/z = 45 indicates loss of CH₃ OR m/z = 45 indicates presence of CH₃CHOH OR CH₂CH₂OH OR C₂H₅O \checkmark

IR of F- Remember to check the spectrum

IR shows (broad) absorption somewhere between 3500 and 2500 cm⁻¹ suggests carboxylic acid **OR** O–H bond \checkmark

IR shows absorption at 1700 cm⁻¹ due to C=O OR absorption at 1700 cm⁻¹ indicates a carboxylic acid \checkmark

Identification and equation

F is $CH_3CH_2COOH OR$ propanoic acid \checkmark

E is $CH_3CH_2CH_2OH$ **OR** propan-1-ol \checkmark

 $CH_3CH_2CH_2OH + 2[O] \rightarrow CH_3CH_2COOH + H_2O \checkmark$

Extra guidance for marking of question

If E has not been identified OR if F has been identified as a ketone or aldehyde, use the first mark scheme

If F has been identified as a carboxylic acid, use the second mark scheme

Mass spec

These two marking points stand as **independent** marks whichever compounds have been identified.

The positive sign for fragment ions is not required. **IGNORE** negative charge. The mass spec may well be on the actual spectrum.

IR mark

These stand as **independent** marks whichever compounds have been identified. The IR analysis may well be on the actual spectrum.

Identification marks

If both structure and name are given they must **both** be correct but allow 'propanol' drawn with the correct structure because the position number of the –OH has been clearly identified

ALLOW ECF for identification of F e.g. if E is pentan-2-ol \times then an answer of pentan-2-one for F will be given a mark \checkmark as ECF

ALLOW identification marks for E and F from equation

Equation mark

ALLOW ECF for any correct equation showing the oxidation of **any** alcohol to the appropriate product.

ALLOW molecular formulae in equations,

i.e. $C_3H_7OH + [O] \rightarrow C_2H_5CHO + H_2O \checkmark$; $C_3H_8O + [O] \rightarrow C_3H_6O + H_2O \checkmark$; $C_3H_7OH + [O] \rightarrow C_2H_5COH + H_2O \checkmark$

6. (a) method 1:

fermentation of sugars or carbohydrates **OR** reaction with yeast with sugar or carbohydrates \checkmark $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 \checkmark$

method 2:

hydration of ethene **OR** reaction of ethene with water **OR** reaction of steam with ethene \checkmark

 $\mathrm{C_{2}H_{4}+H_{2}O} \rightarrow \mathrm{C_{2}H_{5}OH} \checkmark$

ALLOW sugar from equation ALLOW C₂H₆O in equation ALLOW correct multiples IGNORE state symbols ALLOW ethene from the equation IGNORE mention of any catalyst ALLOW C₂H₆O in equation OR H₂O over the arrow ALLOW correct multiples IGNORE state symbols [7]

(CH₃)₂CO OR (b) (i) H₂C =0H,C \checkmark $(CH_3)_2CHOH + [O] \rightarrow (CH_3)_2CO + H_2O \checkmark$ If name and formula given both need to be correct ALLOW propanone OR acetone **IGNORE** propone NOT incorrect named compound ALLOW $C_3H_8O + [O] \rightarrow C_3H_6O + H_2O$ ALLOW O instead of [O] **ALLOW** correct multiples **IGNORE** state symbols

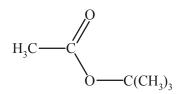
(ii) CH_3CH_2COOH or propanoic acid \checkmark

Any number or range of numbers between 1750–1640 (cm⁻¹) for C=O \checkmark

Any number or range of numbers between 2500–3300 (cm⁻¹) for O–H \checkmark

ALLOW C=O and O—H marks independent of compound identified i.e. stand alone marks ALLOW correct bonds shown by the appropriate absorption on the IR spectrum IGNORE reference to C—O bond

3


2

(c) (i) 2-methylpropan-2-ol ✓ *ALLOW methylpropan-2-ol OR tertiarybutanol*

(ii) ester \checkmark

1

(iii) CH₃CO₂C(CH₃)₃ **OR** CH₃COOC(CH₃)₃ **OR**

ester group shown \checkmark

rest of molecule ✓ *ALLOW* skeletal formula **OR** displayed formula *ALLOW* ester linkage even if rest of structure is wrong

2

[13]

7. Availability of starting materials:

availability

sugar is renewable because it can be grown (1) ethane is finite because it is obtained by processing of crude oil (1)

energy:

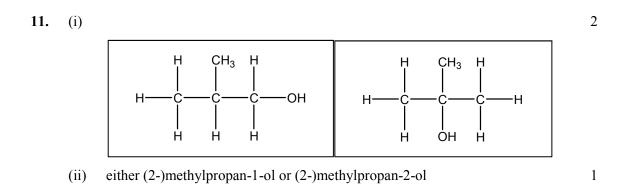
fermentation: energy is required for distillation/ hydration: energy is required to generate steam (1)

atom economy and waste products:

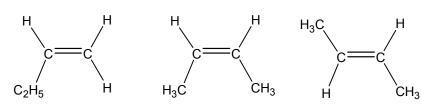
atom economy for fermentation < atom economy hydration (1) In fermentation, CO_2 is produced in addition to ethanol/ethanol is not the only product (1) In hydration, ethanol is the only product/hydration is an addition reaction (1) Atom economy of fermentation could be increased by finding a use CO_2 (1)

Atom economy linked to a chemical equation to show that hydration has 100% atom economy/fermentation has 51% atom economy (1) 7max

[7]


8.	(a)	 (i) (volatile components) can escape/distil out (1) ethanal is most volatile/bpt less than 60 °C/partial oxidation (1) 	2	
		(ii) (volatile components) cannot escape/ refluxed (1) complete oxidation will be achieved/oxidised to the acid (1)	2	
	(b)	$C_2H_5OH + 2[O] \rightarrow CH_3COOH + H_2O$ C_2H_5OH , 2[O] and CH ₃ COOH (1) rest of equation (1)	2	[6]
0			1	

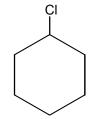
9.	(i)	$C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(l) \text{ or } (aq) + 2CO_2(g)$ balanced equation	1	
		state symbols can be awarded only if equation shows $C_6H_{12}O_6$,		
		C_2H_5OH and CO_2	1	
	(ii)	anaerobic, aqueous, temp range $25 - 40^{\circ}$ C/warm to just above room temp	2	
	(iii)	no more bubbles/gas/CO ₂	1	
				[5]


10. CH₃CH(OH)CH₃ + 4½O₂ → 3CO₂ + 4H₂O /C₃H₈O (1 mark if correct formula for all four chemicals and 1 mark for correct balancing)

[2]

[3]

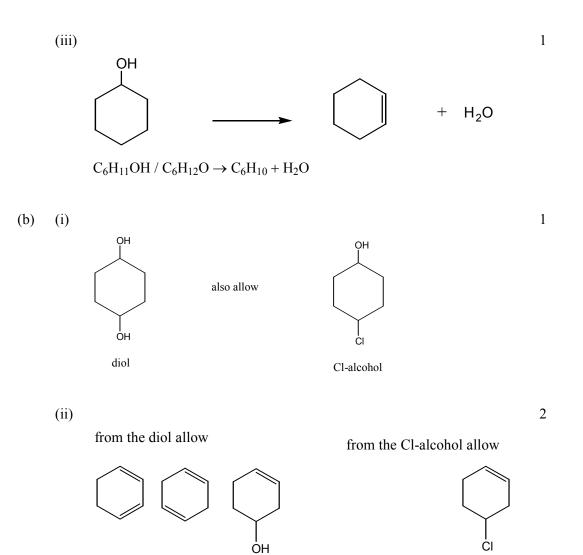
PhysicsandMathsTutor.com



Minimum – must display/show C=C

[3]

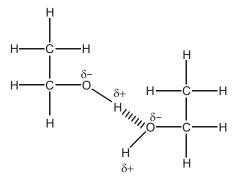
13.	(a)	(i)	H^+ $Cr_2O_7^{2-}$	1 1
		(ii)	Orange to green/black/blue	1
	(b)	(i)	contains a C=O/aldehyde, ketone, carboxylic acid and ester/ carbonyl/carbonyl in an aldehyde	1
		(ii)	does not contain a O-H/ (hydrogen bonded in a) carboxylic acid	1
		(iii)	distillation (no mark) because distillation allows loss of volatile components /removes butanal from oxidising mixture	1
			prevents formation of RCOOH/ partial oxidation would be achieved or reverse argument for reflux not being used in that reflux prevents loss of volatile components hence complete oxidation would be achieved/RCOOH would be formed	1


12.

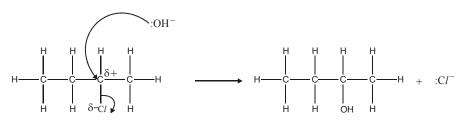
(ii) $H_2SO_4/Al_2O_3/(hot)$ pumice/ H_3PO_4 ($H_2SO_4(aq)$ or dil H_2SO_4 loses the mark)

[7]

1


[6]

- 15. (i) low volatility, = high boiling point/ not easy to vapourise/owtte
 1


 intermolecular bonds. = bonds/forces/attractions between molecules
 1

 (ii) type of intermolecular bond = hydrogen bond
 1
 - dipoles on both O-H bonds

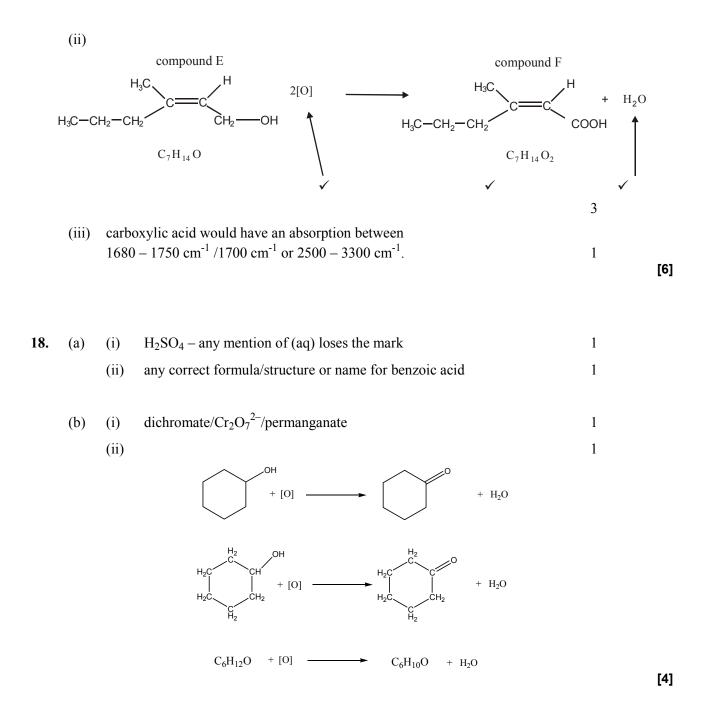
H-bond shown as a 'dashed bond'

- (iii) (The boiling point of glycerol will be higher than ethanol because there are)
 more OH groups ∴ more H-bonds
- 16. (i) butan-2-ol by name or by formula ✓(ii)

curly arrow from the O of the OH- to $C^{(\delta^+)} \checkmark$ curly arrow from C-C*l* bond to C*l* <u>and</u> correct dipoles \checkmark correct products/ allow NaC*l* \checkmark curly arrow from lone pair on :OH⁻ \checkmark S_N1 route can still score all 4 marks: curly arrow from C-C*l* bond to C*l* <u>and</u> correct dipoles \checkmark curly arrow from the O of the OH⁻ to C+ ion \checkmark correct products/ allow NaC*l* \checkmark curly arrow from lone pair on :OH⁻ \checkmark

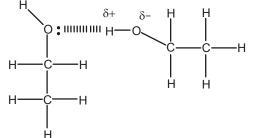
2

4


1

1

1


1

[6]

19. $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ ($C_2H_5OH \& CO_2 \checkmark$)

[2]

l H	
dipoles	
hydrogen bond between O in one O-	Н

and H in the other O-H

lone pair from O involved in the H-bond

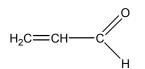
[3]

[9]

1

1

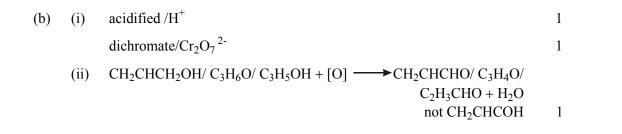
1

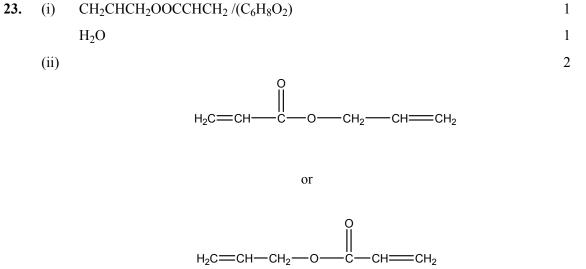

1

1

1

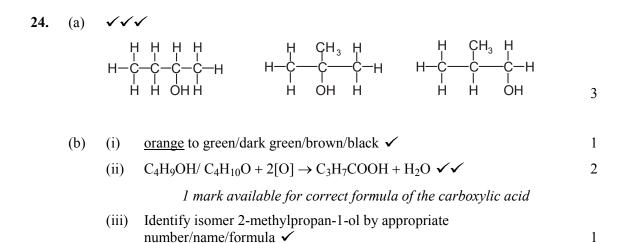
21.	(a)	(i) (volatile components) can escape/distil out	1
		ethanal is most volatile/b pt less than 60°C/partial oxidation	1
		(ii) (volatile components) cannot escape/ refluxed	1
		complete oxidation will be achieved/oxidised to the acid	1
	(b)	$C_{2}H_{5}OH + 2[O] \rightarrow CH_{3}COOH + H_{2}O$ $(CH_{3}COOH + H_{2}O \checkmark)$	2
	(c)	spectrum C	1
		spectrum C only shows absorption at 1700 cm ⁻¹ for the C=O	1
		the other two spectra contain the OH group absorption at approx 3000 cm^{-1}	1


22. (a) (i) prop-2-en-1-ol CH₂=CHCH₂OH must show the C=C double bond **acrolein**

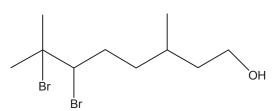

must clearly show the aldehyde group and the C=C

(ii) alkene/C=C double bond

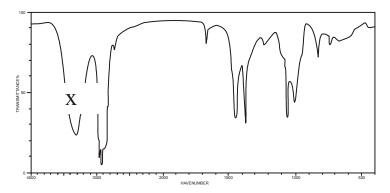
20.



[6]



1 mark if the ester group, 1 mark for the rest of the molecule. COO/CO_2 without displaying the ester, they can still get 1 mark.


4	1	1

	(c)	(i)	CH ₂ has mass = 14, $14 \times 4 = 56$ \checkmark	1	
			$\therefore C_4 H_8 \checkmark$	1	
		(ii)	$C_4H_9OH \rightarrow C_4H_8 + H_2O \checkmark$	1	
		(iii)	Identify butan-2-ol by appropriate number/name/formula	1	
	(d)	(i)	$H_2SO_4 \checkmark$	1	
		(ii)	0.06 🗸	1	
		(iii)	60% ✓	1	
				[1	4]
25.	(a)	(i)	alkene 🗸	1	
	(4)	(1)	alcohol/hydroxy/hydroxyl \checkmark	1	
				1	
	(b)	(i)	I = alkene & II = alcohol both are needed \checkmark	1	
		(ii)	decolourised / colourless 🗸	1	
		(iii)	\checkmark	1	
		()			

(iv) X as shown below
$$\checkmark$$

(c)	(i)	Ni/Pt/Rh/Pd 🗸	1
	(ii)	compound B is $C_{10}H_{22}O$ \checkmark	1
	(iii)	$C_{10}H_{20}O + H_2 \rightarrow C_{10}H_{22}O \checkmark$	1

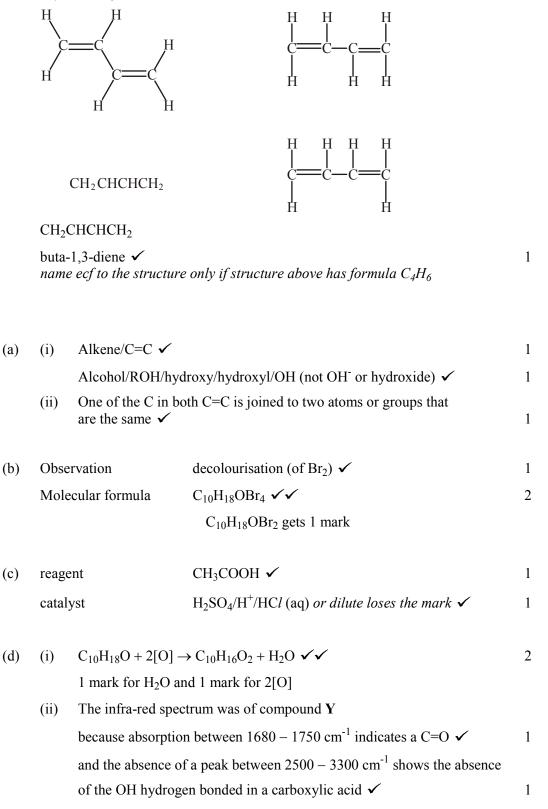
[9]

1

2

26. (a)
$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$

PhysicsandMathsTutor.com


 $2CO_2 + 3H_2O$ gets 1 mark

(b)	Fermentation	1	
	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ \checkmark	1	
	Yeast /enzyme / temperature about 30 °C/ batch process \checkmark	1	
	Hydration of ethene. ✓	1	
	$C_2H_4 + H_2O \rightarrow C_2H_5OH \checkmark$	1	
	Temp > 100 °C/Press 370 – 100 atm $/ 6$ –20 MPa/phosphoric acid catalyst/ continuous process \checkmark	1	
	Glucose is obtained from plants \checkmark Ethene is obtained from crude oil/cracking/fossil fuel \checkmark glucose is renewable/ethene isn't \checkmark	1 1 1	
of th	ark available for <i>Quality of written communication</i> base the award ne mark on the ability to communicate the essential chemistry by correct of at least two from:		
	entation/hydration/catalyst/renewable/sustainable/biofuel/ /mes/finite/cracking ✓	1	[12]

27.	(a)	(i)	C_4H_{10} ✓	1
		(ii)	C_2H_5O ✓	1
		(iii)	B and E \checkmark	1
		(iv)	A and F 🖌	1

(b)
$$(C_4H_9OH \rightarrow) C_4H_8 + H_2O \checkmark$$

(:)	any unambiguous formula:	\checkmark
	• •	ung unumorguous formulu.	-

28.

[12]

1

[7]